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PREFACE 

This Memorandum continues Project RAND's program of 

research In graph theory and other aspects of combinatorics. 

In particular, various known theorems about finite bipartite 

and directed graphs are generalized to Infinite bipartite 

and directed graphs. 

Graph theory not only finds application to transporta- 

tion networks and to similar operations research problems, 

but constitutes a general theory of relations on finite 

or Infinite sets. 
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SUMMARY 

The main theorem of this Memorandum provides necessary 

and sufficient conditions in order that a locally finite 

bipartite graph have a subgraph whose valences lie in pre- 

scribed intervals.    This theorem is applied to the study 

of integer-valued flows in locally finite directed graphs. 

In particular, generalizations of the max-flow min-cut 

theorem and of the circulation theorem are obtained. 

The axiom of choice is assumed throughout. 
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SUBGRAPHS OF BIPARTITE AND DIRECTED GRAPHS 

1.  INTRODUCTION 

Our object In this paper is to generalize certain 

known theorems about finite bipartite and directed graphs 

to infinite (usually locally finite) bipartite and directed 

graphs.  In the development that follows, we have chosen as 

our main theorem (Theorem 1) one that gives necessary and 

sufficient conditions for the existence of a valence- 

constrained subgraph H of a bipartite graph G. Specifically, 

let G be a bipartite graph having vertex parts I, J and 

suppose that for each vertex i e I wo. are given a pair of 

nonnegative integers [a., a!] satisfying äJ < a!, and that 

for each vertex J e J we are given a pair of nonnegative 

integers [b., bl] satisfying b. < b!. We also suppose that 

if a. > 0, then 6 has finite valence at i; similarly, if 

b. > 0, we suppose that G has finite valence at J. Under 

these assumptions, we obtain necessary and sufficient con- 

ditions in order that G have a subgraph H whose valence 

at i e I lies in the interval [a., aJ] and whose valence 

at J c J lies in the interval Cb , b' ]. If G is finite, 

existence conditions for such an H are known [3, 4].  In 

Sec. 2 we show that these conditions extend to the infinite 

case. Our proof invokes the Tychonoff theorem explicitly, 

and hence the axiom of choice implicitly. 

There are a number of theorems that can be viewed as 
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speclal cases of Theorem 1. Among these are the Schröder- 

Bernstein theorem (or, equivalently, the Banach mapping 

theorem [1]), the Hall theorem on systems of distinct 

representatives [5, 6], a generalization of the Schröder- 

Bernstein theorem due to Perfect and Pym [10], and a receit 

generalization by Mirsky [9] of a theorem of Ford and 

Fulkerson [2] concerning systems of representatives with 

repetition. We shall discuss these briefly in Sec. 3. 

The remainder of the paper deals with applications of 

Theorem 1 to flows in directed graphs. In particular, the 

max-flow min-cut theorem of Ford and Fulkerson [3] sind the 

circulation theorem due to Hoffman [3, 8] are generalized 

to locally finite directed graphs via Theorem 1. 
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2.  THE MAIN THEOREM 

By a natural number we mean a nonnegative integer. 

By an extended natural number we mean a natural number or 

•. We extend the ordering of the natural numbers to the 

extended natural numbers by defining n < • to be true for 

every natural number n. We extend the operation of addi- 

tion to the extended natural numbers by defining « + « ■ » 

and • + n-n + »"« for every natural number n. 

If S is a finite set and xi is an extended natural 

number for each i e S, then T.   x. Is a well-defined 
ieS 1 

extended natural number.  If S is a (possibly infinite) 

set and x^ is an extended natural number for each i c S, 

let F+ - fi e S|x. >0). If S+ is infinite, set E x4 - •. 
icS 

If S+ is finite, set E x. - ^ jX.. 
icS 1  icS"*" 1 

Let I and J be sets. For each i e I let a. be a 

natural number and a! an extended natural number with 

a^ < *£• For each J e J let b. be a natural number and 

b I be an extended natural number with b. < bi. For each 

i c I, J e J, let c.. be a natural number. Suppose the 

following "weak local finiteness" condition is satisfied: 

(W.L.F.) For each i c I either a^ - 0 or c^. ■ 0 for 

all but finitely many J c J. For each J c J either b. - 0 

or Cj. - 0 for all but finitely many i e I. 

Consider the following conditions which may or may 

not be satisfied by the numbers a., b., c..: 

(la) For each finite N c i  r a4 < E min (b], E c4.). 
ieN 1 " jej     J ieN ■• 

* 
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(Ib) For each finite M c jt  r b, < r min (a], Z    c..). 
JcM J " id      " JcM 1J 

(Ila) There is a family x - fxti}4eT «€j 
of natural numbers 

such that 

(Ilai) for each i e I, j c J, x^^. < c^, 

(Hail) for each i e I, a. < T.   x.., and 
1 " jej M 

(Ilaiii) for each J € J, T    x4. < b!. 
id M * J 

(lib) There is a family x * ^xii^iel lej of natural numbers 

such that 

(Ilbi) for each i c I, J c J, x^. < c^., 

(Ilbii) for each j e J, b. < E x4.( and 
J  iel lJ 

(Ilbiii) for each i c I, T   x4. < ai. 
JcJ ^ - 1 

(III) There is a family x - ^i^iei lej of natural ntmibers 

such that 

(Uli) for each i c I, j e J, x^ < c^., 

(IXIii) for each i c I, a. < r.   x.. < a,', and 
1 " jej ^ " 1 

(IXIiii) for each j c J, b. < E x.. < b*. 
J " iel * * J 

THEOREM 1. Assume that condition (W.L.F.) holds. Then 

(i) Condition (Ila) holds if and only if condition 

(la) holds. 

(ii) Condition (lib) holds if and only if condition 
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<Ib) holds. 

(ill) Condition III holds if and only if conditions 

(la) and (lb) both hold. 

(iv) Condition III holds if and only if conditions 

(Ha) and (lib) both hold. 

PROOF. Ila * la.    Let x - toUfla^i «€j be * family of 

natural numbers  satisfying Ila.    Let N be a finite subset of I. 

For each 1 c J,     5:    x4,  <    r   x4.  < b.' by (Ilaiii).    For 
icN    ■I ~ iel    ^ "    J 

each i c N c i    x4.  < c4, by (Ilai).     Hence,    £   *** <    I    c4.. 
^-J -   iJ icN    ^ " icN    1J 

Hence, for each J  c J,    ^    x..  < min (b!,    7    c..).    By 
icN    1J " J     icN    1J 

(Ilaii), a4  <    T.    x..  for each i e  I.    Therefore, 
1"jcj    ■* 

r   a 
icN 

.<£      Z    x4.  »    7,      Tx. ,<r    min (b',    7    c4.). 
1 " ieN jej    1J      JcJ icN    ^ " JcJ J    icN    1J 

By a similar argument,  interchanging the roles of I 

and J,  lib • lb. 

Ill * Ila and lib.    Let x - (xj,)^ *€j be a family of 

natural numbers satisfying III.    Then x also satisfies Ila 

and lib. 

la and lb ^ III.    For i c I, J  e J,  let ly be the set 

of integers n with 0 < n < c...    With the discrete topology, 

Xj,  is a compact Hausdorf space.    Hence, by Tychonoff's 

theorem, X -    n    X,.  is a compact Hausdorf space, 
id    iJ 

For each i c  I,  let Pi be the set of x e X such that 

HI   E   %§£*«•    For each J e J.  ^ct Q. be the set of i - jCj    ij -   l ^ 

x e X such that b.  <    J:    x4< < b.'. 
J - lei    1J -   J 
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Lenma.  For each 1 € I and each j € J, P^ and Q. are 

closed subsets of X. 

Proof. Let x c X with x i P^. There are two possi- 

bilities: 

(1) I    x±.  < a, or 
jej '■J   1 

(2) y.    x.. > a' 
jcj M   1 

Suppose the first possibility holds. Then &i > 0,  and so 

by condition (W.L.F.) the set M - fj € jlc^ > 0) is 

finite.  Let U - {y « xly^ - x^ for j e M). Then U is 

an open subset of X and x e U. Let y e U. For J i M, 

y<4 ^ cii ■ 0» *nd 80 T yiA m T ^ii ■ E "n • .^ xii 

< a.. Hence y i P., so U is an open subset of X containing 

x which does not intersect P^. 

Now suppose the second possibility holds.  Then there 

is a finite set N c j such that S x.. > aJ. Let 
jcN 1J   1 

f • (F t l|fu ■ Xj^. for j c N). Then V is an open subset 

of X and x c V.  If y c V then T y.. > S Yu  m 

JcJ 1J  jcN 1J 

T x.. > a.1, so y i P4. Therefore, V does not intersect Pj. 
jeN  J 

We have now shown that every point x e X which is 

not in P^ is contained in an open set not intersecting P^ 

Hence, P^^ is closed. Similarly, Q, is closed. 

Now let N and M be finite sets with N c I and M c j. 

Let N+ - U c N|a1 > 0} and M
f - {J e M|b. > 0}.  Let 

fif - {i c l|c1. > 0 for some j c M+}, and let 
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R " fj « Jlc^ > 0 for some i € N+).  Since N+ c N and 

M 5 M are finite se^s,  it follows from condition (U.L.F.) 

that Tf and R are finite. 

For each i € N U H, let ij^ - a^^ if i e N and ^ - 0 if 

i c H - N. For each J € M U H let F. - b. if j e M and 

F. - 0 if j € R - M. 

Let N' c N U N. Then 

J!    ä. -       T.       a.   ■        Z       a    1    r    min (bl,        S        CA*) 
icN1  1      icNON1     ^      icN^ON1     1 ~ JcJ J    icN^ON1     1J 

Now if J  € J - H,   then c..  - 0 for each i e N f  and so 

min  (b* T        c..) - min (b*    0) - 0.     Hence, 
J    icN^-nN'     1J J 

T.     a.   <   T.   min   (bl,        ?        c..) -    r   min (b' E        c..) 
icN'     ^^ " j€j J     icM+nN'     1J jeH J     ieN+TN'     1J 

<     S      min (b!,    2      c.,). 
jcMUH J     ieN'     1J 

Similarly,  if M1 £ M U H,   then 

E    F.  <      E      min (al,     T     c..). 
jcM1    J       icNUU 1    jcM'     1J 

Hence, by [4, Theorem 1 or Theorem 5],   there is a family 

of natural numbers x -  (x^}^^ jeMUR such that 

(3) a4  <     E      x..< a!      for each i c N U N, 
1 ~ JeMUH    ^    "    1 

(4) F.  <      T.      x..   < b'      for each j  € M U Hf and 
J - i€NU!r   iJ -   J 

(5) x^  < c^  for each ieNUU,  jcMUR. 
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Define a family of natural numbers y ■  fy^ili-T  I-T 

by 

fXj.      if 1 e N U N and j  c M U H, 

10 ifi^NUlTorjiMUH. 

Let i e I, j c J.  If i i N U Ü or J i M U R then 

Xij " 0 1 cij«  If i e N U H and j € M U H, then yj. - xi. < c^ 

by (5).  Hence y e X. 

Now let i e N. Then 

T: y.  - T.      x... 
JeJ 1J  JeMUH ^ 

Hence, by (3), 

Therefore, y € p^. Similarly y e Q. for each j e M. Hence, 

fl P. H fl Q. is nonempty, 
i^ 1  jcM J 

We have now shown that every finite subcollection of 

the collection i^i)iei  u fQ^icj 0^ cl08e<* subsets of X 

has a nonempty intersection.  Since X is compact it follows 

that H P. H D 0. is nonempty. Any element x in this 
iel 1  JeJ J 

intersection satisfies condition III. 

We have now shown that la and lb * III, that III =» I la 

and lib • la and lb, so part (iii) of the theorem is 

established. 

la * Ila. Suppose condition la is satisfied. For 
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each J € J let F. - 0. Then Er < b *.  If M c j i8 a finite 

set, then E F, - 0 < T.   min (aJ, T.    c..).  Hence the 
jeM J      id      1 jcM XJ 

numbers {ii)^»   fai}iCi» ^j^jej 
and ^bj^j€j satisfy con" 

dition lb as well as condition la.  By part (iii) of the 

theorem there is a family x ■ {xi*h€i  iej  of natural numbers 

such that 

a. < T,    x.. < til      for each 1 c I, 
1 - jcj ^ " 1 

F. < T    x4. < b.'  for each j c J, and 
J ~ iel lJ " J 

x.. < c..  for each i c I, j e J. 

The family x satisfies condition Ila.  By a similar argument, 

lb =* lib. This establishes parts (i) and (ii) of the theorem. 

Part (iv) follows from parts (1), (ii), and (iii). 

In connection with Theorem 1, we note the following: 

Remark 1. Suppose G-(I, J;E)isa bipartite graph 

with vertex parts I, J and edgj set E c I x J. Let c.. - 1 

or 0 according as (i,j) e E or (i,J) t E, and suppose that 

G has the "vertex assignment of intervals" [a., a!], i e I, 

and Cb., b!], j c J.  If G is locally finite at vertices 

1 e I (J c J) for which a. > 0 (b. > 0), then Theorem 1 

gives necessary and sufficient conditions in order that G 

have a subgraph H whose valences lie in the prescribed 

intervals. 

Remark 2. The assumption in Theorem 1 that c.. is 

a natural number, rather than an extended natural number, 
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is not essential, since we may replace c.. by c., - max (a., b.) 

if ciJ > ^i* 

Remark 3. Theorem 1 remains valid if we replace 

"natural number" by "nonnegative real number" and "extended 

natural number" by "nonnegative extended real number" and 

define ^ x. - sup f ^ XJN c s, N finite 1 for any family 
ieS I      i€N ^^  ~ 

{x.}. s of nonnegative extended real numbers. The only 

change needed in the proof is in the proof that la and lb * 111. 

In the real case we take X.. ■ [0, c..l and argue as before 

except for the proof of the lemma. The only change needed 

in the proof of the lemma is to take 

U - {y c xly^ < x^ + 8  for j e Ml 

where & 

and to take 

> 0 is a real number so small that 6|N| < a. - £ x.. 
1 Jej ^ 

V - {y e Xly^ > x^ - 6  for j c N) 

where 6 > 0 is a real number satisfying 6|N| < ^ x.. - aJ. 
jcN 1J   1 

Remark 4.  Condition (la) is equivalent to 

(la1) For each finite N £ i and each finite M c j, 

^ a. < T b! +  S  c. , 
ieN *      JcM J   icN  1J 

j€j-M 

and similarly for (lb). 

Remark 5. The assumption (W.L.F.) is essential in 

Theorem 1, as the following example (due to M. Hall [5]) 
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shows.     Let I and J be Che positive Integers and define 

0-l 
1 If either 1-lorl-j+l, 

0 otherwise. 

Take aj - aj - 1 for all 1 c I, and b. - 0, b' - 1 for all 

j c J. Thus (W.L.F.) falls to hold for 1-1. Conditions 

(la) and (lb) hold, but (III) fails. 

Remark 6. Another proof of Theorem 1 can be given In 

which the main tools are the finite case of the theorem 

and the following "infinity lemma," which Is a consequence 

of Zorn's lemma. 

Infinity Lemma. Let S and X be sets. Let "<" be a 

partial ordering on S. Suppose that for any 1, J e S there 

is a k c S with 1 < k and J < k. For each 1 e S, let X^^ be 

a finite nonempty subset of X.  For each 1, J e S with 

1 > J, let f.. be a function from X. to X.. Suppose that 

fll ^ * x ^or each 1 € S and each x e X^. Finally, 

suppose that If 1, J, k e S with 1 > j > k, then 

f.jt(fi1(x)) ■ fj^Cx) for each x e X^. Then there Is a 

function f from S to X such that f(l) € X^ for each 1 c S, 

and If 1, J € S with 1 > J, then f1j(f(l))- f(J). 

Use of the Tychonoff theorem Instead of the above 

lemma shortens the proof considerably, however. 
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3.  RELATED RESULTS 

Theorem 1 includes a number of known results about 

mappings, systems of distinct representatives, systems 

of representatives with repetition, and so on. We discuss 

some of these and begin with the Schröder-Bernstein theorem. 

Let 1 and J be sets and let cp:I-J, t:J~Ibe injec- 

tive mappings.  The Schröder-Bernstein theorem asserts 

the existence of a bijaction a : I - J. Usual proofs of 

the theorem assert more, namely that the bijection a  can 

be viewed as a subgraph of the bipartite graph 

G - (I, J; E1 U E2), where E1 - {(i, cp(i))|i € I}, E2 - 

{(♦(J),J)|j e J}.  In terms of Theorem 1, take c^. - 1 

for each edge of G, c.. - 0 otherwise, and let each vertex 

of G have the interval assignment Ll,l].  Note that (U.L.F.) 

holds and that the hypothesis of the Schröder-Bernstein 

theorem implies that (Ha) and (lib) hold. Hence (III) 

holds, yielding the bijection a  : I -* J. 

Next let J be a set and let F - fFi^i€l be a family 

of finite subsets of J.  The Hall theorem [5, 6] concerns 

the existence of a system of distinct representatives for 

the family F.  In terms of Theorem 1, take c^. - 1 or 0 

according as J e F^ or j | F^, and take a^ - a^ ■ 1 for 

each i c I, b. - 0, b' - 1 for each j € J. Note that 

(W.L.F.) is satisfied. The Hall theorem asserts that F 

has a system of distinct representatives if and only if 

the "Hall condition" holds: For each finite subset N c I, 

' 
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the cardinality of N Is less than or equal to the cardi- 

nality of U F..  In other words, (III) holds if and 
ieN 1 

only if (la) holds.  (Condition (lb) holds automatically, 

since b. - 0 all j e J.) A proof of the Hall theorem 

that uses the Tychonoff theorem in the infinite case has 

been given in [7]. 

A generalization of the Schröder-Bernstein theorem 

due to Perfect and Pym [10] runs as follows.  Let 1, J, 

I', J' be sets with I1 c I, j» c j. Let E be a subset of 

I x J and let cp : 1* -J, t : J1 -Ibe injective mappings 

such that (1, 9(1)) * E for all i e I* and (Hj), j) e E 

for all J e J*. Then there exist sets 1Q, JQ with I1 c 

I0 — I» ^ E Jo - ^ and a biJection a : Io "* J0 8Uch that 

(i, (7(i)) c E for all i e IQ.  (If 1' - 1 and J1 - J, this 

reduces to the Schröder-Bernstein theorem.) To deduce 

this result from Theorem 1, take a^ - 0 or 1 according as 

iel-l' oriel', and take a^ - 1 for all i e I. 

Similarly, take b. - 0 or 1 according as J e J - J* or 

J c J', and tr.ke *>* ■ 1 for all j c J. Define c^.  - 1 if 

either j - cp(i) or i - <Kj), c.. - 0 otherwise. Thus 

(W.L.F.) holds and (11a) and (lib) are satisfied by hypothe- 

sis.  Hence (III) holds, producing the desired sets I«, JQ 

and the bijection a : IQ - JQ. 

Mirsky [9] has recently generalized to the case of 

infinite families of finite sets a theorem of Ford and 

Fulkerson [2] for finite families concerning systems of 
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representatlves with repetition allowed. The general 

result may be described as follows. Let I and J be sets 

and define ai m al m ^    for each i e I, but consider an 

arbitrary assignment of intervals [b., b'] for J e J. 

Suppose c.. ■ 0 or 1 in such a way that (W.L.F.) holds, 

i.e. for each i e 1, c^. - 1 for only finitely many J e J, 

and if b. > 0 for j € J, then c^. - 1 for only finitely 

many i e I.  For each finite set N c i( define 

A(N) -{je Jlcj. - 1 for some i c N}. 

Similarly, for each finite set N c j, define 

B(M) - (i c llc^ - 1 for some J e M}. 

The theorem asserts that (111) holds if and only if: 

(a) For each finite N c i, |N| <  £   b'; 
" JeA(N) J 

(b) For each finite M c j,  E b. < |B(M)|. 
jcM J " 

(Here |s| denotes cardinality of a set S.) Since a[ - 1 

for all i e I, it is apparent that (b) above is equivalent 

to (lb). It is also not hard to see that, since a. ■ 1 

for all i e I, condition (a) above is equivalent to (la). 

Mirsky's proof of this theorem in the infinite case uses 

two principal tools: the Hall condition and the generalized 

form cf the Schröder-Bernstein theorem due to Perfect and 

Pym. 
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4.  FLOWS IN DIRECTED GRAPHS 

Let V be a set and suppose that for each 1 e V there 

are Integers d., dl satisfying d. < dj. We also suppose 

that for each (i, J) e V x V there are integers l^., 

u^. satisfying 0 < t.. < u.., with u.. - 0. Throughout 

this section we make the following local finiteness 

assumption: 

(L.F.) For each i e V, u.. - 0 for all but finitely many 

J e V, and u.^ > 0 for all but finitely many J e V. 

We call a function f from V x V to the natural 

numbers a feasible flow if and only if 

(6) d.  <   T. f..  -    r.    f..  < dl,  all i € V, 
1 *" JcV 1J  JeV J1 ~ l 

(7) t^ < «JJ < u^, all (i, J) e V x V. 

If we think of the directed graph G - (V; E), with 

vertex set V and edge set E - f(l, J) e V x VJu^ > 01, 

then (L.F.) says that G is locally finite. The inequali- 

ties (6) stipulate that the "net flow out of vertex i" 

lies in the prescribed interval [dj, d!], and (7) that 

the "flow in edge (i, J)" lies in the prescribed interval 

[t..f u..3. If G is finite, necessary and sufficient 

conditions for the existence of a feasible flow are known 

[3, 8]. We can use Theorem 1 to extend these conditions 

to the case of locally finite infinite directed graphs. 
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THEOREM 2. Assume that condition (L.F.) holds. 

Then there is a feasible flow if and only if for each 

finite X 5 V, 

(8) E 
i€X 

JcV-X 

I..  <    T. 
lJ       ieX 

di +    y 
i€V-X 

J€X 

UIJ 

(9) z  d1 
i«X    1 

+    y. 
leV-X 
J€X 

Hj <     y 
"    ieX 

J€V-X 

uir 

Proof.    The translation g - f - i shows that a 

feasible flow f exists if and only if an integer-valued 

g exists satisfying 

(6')     N < E g.. - E g.. < h' all i c V, 
1  jcV 1J  jcV J1   1 

(7')     0 ^ 8^ < diy  all (i, j) e V x V, 

where 

(10) h. - d. + y    I .   -    E i.   , 
JcV J1  JcV 1J 

(11) h' - d{ + E l.±  -    E i 
l  JcV J1  JcV lJ 

(12) dij-uij-^ij. 

The existence of such a g is equivalent to the 

existence of g and (an integer-valued) y defined on V x V 

satisfying 

(13) g^ + y^ - d^, all (i, J) e V x V, 
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(14) t    ^^  - h| <    T.    y.. +    ^    gu <    5:    d..   - h1, 
JeV    1J *      jeV    1J      JeV    JL      JeV    1J        x 

all lev, 

(15) g^   > 0,  y^  > 0, all  (i.  j) € V x V. 

We can now apply Theorem 1 to the constraints (13), 

(14), (15). First note that (13), (14), and (15) are 

equivalent to (13), (14*), and (15) where (14*) is given 

by 

(14»)    max (0,    ?    d1.  - h!) <   v.    yu +    v    gu <    ^    d±.  - h. 
JeV    1J 1        jeV    1J       JeV   J1      JeV    1J 1 

for all i e V. 

In Theorem 1 take I - {(i, J) e V x vl^. > 0), J - V, 

with the interval assignments 

(16) Cd^, d^],  (i, J) e I. 

(17) Cnax (0, E d^. - h'), Z    d±.  - h.],  i c J, 
JeV 1J   *  jeV 1J   1 

and define the numbers c.., , (i, J) e I, k e V by 

(-, if i - k or J - k 
(18) c1 k - 1JIC (0 otherwise. 

Note that (L.F.) implies that (W.L.F.) is satisfied for 

(16), (17) and (18); indeed for fixed (i, J) e I, c.^ > 0 

for at most two k e V and for fixed k e V, c... > 0 for 

only finitely many pairs (i, j) c I. Also note that for 

i e V, 
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jeV    1J 1      jeV    l:,       jeV    1J 1      jeV    J1      jeV    1J 

■    ^u      -cl-v't      >0 
jeV    ^ i      jeV    ^ ~ 

by (9) with X ■ (!}, Hence, since hi > h., the lower bounds 

of the intervals (17) never exceed the upper bounds. 

The existence of the family x ■ f*4«u}/4 \)el  kcJ 

satisfying (III) is equivalent to the existence of g and y 

satisfying (13), (14), (15), as one sees by putting 

/ gtj ,      if k - j , 

xijk ■ Nir   if k - ^ 
i    0,        otherwise. 

Theorem 2 now follows from Theoreri 1, part (iii). 

The inequalities (9) are equivalent to those of (la) and 

(8) to those of (lb). We omit a detailed proof of these 

assertions. 

By taking d. « dl - 0 in Theorem 2, necessary and suf- 

ficient conditions are obtained for the existence of a 

feasible conservative flow in locally finite directed graphs. 

Theorem 2 can be used also to prove the max-flow min- 

cut equality for locally finite directed graphs. Here we 

distinguish two vertices of G - (V; E), say s, t e V.  We 

assume that each edge (i, J) e E has an integer flow capacity 

u.  > 0, and seek a maximum flow from s to t, i.e., subject 

to the following constraints on integers f^., 
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v,  i - s 

(19)    T   f.. -   y.   f..  - ;-v,  i - t, 
jcV 1J  jeV JX 

0,  otherwise, 

(20) 0 5 fij 1 "ij»   (i, J) c E, 

we wish to maximize v, the amount of flow from s to t. 

By adding the special "return-flow edge" (tt s) to E, with 

its associated interval [v, v], taking d. - d^ - 0 all 

1 e V, and taking *-{« ' 0 for edges of E other than the 

special edge (t, s), the problem becomes that of seeking 

the largest v for which there is a conservative feasible 

flow in the resulting graph. Theorem 2 then implies 

Theorem 3, below. To state Theorem 3 concisely, we make 

the following definitions. A finite cut separating s and 

t is a partition of V into two sets X, V - X, where s e X, 

t e V - X, and one of X, V - X is a finite set. The 

capacity of such a cut is given by the sum 

(21) E  u. . 
icX  1J 

jeV-X 

Theorem 3. Assume that (L.F.) holds.  Then the 

maximum amount of flow from s to t is equal to the minimum 

capacity of all finite cuts separating s and t. 

We conclude with the following remarks. 

Remark 7. Theorem 2 is false if we allow u. . - ». For 

example, take V to be the set of integers, and define 
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di ' di " 0» i e V» ui,i+l - 00. "ij - 0 if J ^ i + 1, 

li  1+1 - i if i > 0, l^  - 0 otherwise. Then (8) and (9) 

are satisfied, but there is no feasible flow. 

Remark 8.  It is essential in Theorem 3 to restrict the 

class of cuts to the finite ones. For example, consider 

the disconnected graph composed of two disjoint uniformly 

directed one-way infinite paths, with s as the front end 

of one of these paths, t the tail-end of the other. 

Suppose each edge of this graph has capacity 1.  Then 

there is a flow from s to t of amount 1, but s and t are 

separated by an infinite cut of capacity zero. 
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